Course Syllabus

MBMG 610 Innovation in Research Academic year 2022

Course ID and Name: MBMG 610 Innovation in Research

Course coordinator: Assoc. Prof. Surapon Piboonpocanun, Ph.D. Tel: 02-441-9003-7 ext. 1233

E-mail: surapon.pib@mahidol.edu; piboons@gmail.com

Instructors:

Assoc. Prof. Surapon Piboonpocanun

Credits: 1 (1-0-2) (1 credit)

Curriculum: Doctor of Philosophy Program in Molecular Genetics and Genetic Engineering

Semester offering: Second semester

Pre-requisites: None

Course learning outcomes:

Upon completion of this course, students are able to:

- (1) Demonstrate ability to plan, inquire information and use it to develop model of potential innovative products
- (2) Demonstrate ability to search and map out scientific research area that will yield innovative products
- (3) Demonstrate teamwork, interpersonal skills and responsibilities for the work assignments

Alignment of teaching and assessment methods to course learning outcomes:

Course learning outcomes	Teaching methods	Assessment methods
1. Demonstrate ability to plan, inquire information and use it to develop model of potential innovative products	(1) Mind mapping, Interviewing, Exploration, and Reflection (2) Presentation (3) Questions and discussion	(1) Presentation(2) Participation in activitiessuch as Idea telling
2. Demonstrate ability to search and map out scientific research area that will yield innovative products	 Portfolio of idea and prototype Questions and discussion 	(1) Presentation(2) Participation in activitiessuch as Idea telling(3) Prototype analysis
3. Demonstrate teamwork, interpersonal skills and responsibilities for the work assignments		(1) Presentation and Prototype evaluation

Course Description

Molecular biosciences-based research and innovation; Technology Readiness Level and how basic research becomes innovation development; Interlectual Property; Thai Patent and Petty Patent; exploration of Patent Databases; reading Patent files; entrepreneurships; lean canvas; Prototype assembly; startup pitching

Course outlines:

Class meeting:

Week	Topic and Activity
1	IP and Innovation cycle
2	Patent search DB and Prototype building
3	Patent, Design thinking, Lean canvas
4	Design thinking, Lean canvas and Technology Readiness Level (TRL)
	comparison, Crowd funding (How to)
5	Pitching (how-to, preparation) and Prototype (check-list)
6	Pitching (testing animated presentation), Prototype 1st evaluation
	(matching Lean canvas and TRL)

Assessment Criteria:

Assessment Criteria	Assessment Method	Scoring Rubric	
Ability to plan, inquire information	(1) Observation	Creativity and Pre-class	
and use it to develop model of	(2) Discussion	imagination	
potential innovative products (35%)	(3) Questions and Answer	_	
Ability to search and map out	(1) Observation	Design thinking and Prototype	
scientific research area that will	(2) Discussion	development	
yield innovative products (35%)	(3) Questions and Answer		
Teamwork, interpersonal skills and	(1) Presentation, Pitching	Pitching the innovative	
responsibilities for the innovative products (30%)	(2) Discussion	product	

Student's achievement will be graded using symbols: A, B+, B, C+, C, D+, D and F based on the criteria as follows:

Percentage	Grade	Description
80–100	A	Excellent
75–79	B^+	Very Good
70–74	В	Good
65–69	C ⁺	Fairly Good
60–64	C	Fair
55–59	D^+	Poor
50-54	D	Very Poor
0–49	F	Fail

Evaluation Rubric

Creativity and Pre-class imagination (15%)

Criteria	Need to improve (-2)	Satisfactory (-1)	Exceed Expectation (0)
Prototype	Prototype lacks of	attempts to include	Well-designed Prototype that
Design (5%)	components that will	elements in Prototype but	could work and solve
	solve problem	may not work efficiently	problem
Developing	Shows idea but	Shows some imagination	Carefully evaluates the
Ideas (5%)	cannot shape into a	when shaping ideas into a	quality of ideas and selects
	product	product	the best one to shape into a
			product
Total (10%)			

Design thinking and Prototype development (45%)

Criteria	Need to improve (-4)	Satisfactory (-2)	Exceed Expectation (0)
Developing and	Selects one idea	Develops some original	Carefully evaluates the
Revising Ideas	without evaluating	ideas for product(s),but	quality of ideas and selects
and Products	the quality of ideas	could develop more with	the best one to shape into a
(20%)	Does not ask new	better use of idea-	product
	questions or	generating techniques	Seeks out and uses feedback
	elaborate on the	Shows some imagination	and critique to revise product
	selected idea	when shaping ideas into a	to better meet the needs of
		product, but may stay	the intended audience
		within conventional	
		boundaries	
Prototype	Prototype lacks of	attempts to include	Well designed Prototype that
Design (10%)	components that will	elements in Prototype but	could work and solve
	solve problem	may not work efficiently	problem
Originality	relies on existing	show a tentative attempt to	use common materials or
(10%)	models, ideas, or	step outside rules and	ideas in new, clever and
	directions; it is not	conventions, or find new	surprising ways
	new or unique	uses for common materials	
		or ideas	
Value (5%)	impractical or	it may not solve certain	it solves the defined problem
	unfeasible	aspects of the defined	or meets the identified need
		problem or exactly meet the	is practical, feasible
FD - 1 (450()		identified need	
Total (45%)			

MBMG 610 Innovation in Research

Pitching (40%):

Criteria	Need to improve (-2)	Satisfactory (-1)	Exceed Expectation (0)
Pitching (15%)	presents ideas and	attempts to make	presentation is fun, engaging,
	products in typical	presentation more lively	and powerful
	ways	and engaging	
Question and	Hesitate, not able to	explain Prototype functions	explain Prototype functions
Answer (5%)	fully explain	but lacks of detail in some	in detail
	Prototype functions	parts	
Total (20%)			