Course Syllabus

MBMG 500 Essentials in Molecular Biology Academic year 2023

Course ID and Name: MBMG 500 Essentials in Molecular Biology

Course coordinator: Assoc.Prof. Apinunt Udomkit

Tel: 02-441-9003-7 ext. 1466

E-mail: apinunt.udo@mahidol.ac.th

Instructors:

- 1. Prof. Chanan Angsuthanasombat
- 2. Assoc. Prof. Chalermporn Ongvarrasopone
- 3. Assoc. Prof. Panadda Boonserm
- 4. Asst. Prof. Duangrudee Tanramluk
- 5. Asst. Prof. Poochit Nonejuie
- 6. Lect. Ittipat Meewan

Credits: 2 (2-0-4)

Curriculum: Master of Science Program in Molecular Genetics and Genetic Engineering (required course)

Doctor of Philosophy Program in Molecular Genetics and Genetic

Engineering (required course for students from B. Sc.)

Semester offering: First semester

Pre-requisites: None

Expected learning outcomes:

1. Explain the fundamental structures, properties and functions of cells and biomolecules

2. Compare and analyze molecular processes and mechanisms of regulation in prokaryotes and eukaryotes

3. Describe principles of basic techniques and bioinformatics tools necessary for molecular biology research

- 4. Show disciplines and responsibility for assigned works
- 5. Use appropriate information technology to explore literatures in Molecular Biology

Program	Course learning outcomes	Teaching	Assessment methods
learning		methods	
outcomes			
Ph.D. (PLO1,	1. Explain the fundamental	1. lecture	1. class participation
PLO2)	structures, properties and	2. active learning	2. assessment of
M.Sc. (PLO2,	functions of cells and	3. discussion	assigned work
PLO3)	biomolecules		
Ph.D. (PLO1,	2. Compare and analyze molecular	1. lecture	1. class participation
PLO2)	processes and mechanisms of	2. active learning	2. assessment of
M.Sc. (PLO2,	regulation in prokaryotes and	3. discussion	assigned work
PLO3)	eukaryotes		
Ph.D. (PLO1,	3. Describe principles of basic	1. lecture	1. class participation
PLO2)	techniques and bioinformatics	2. active learning	2. assessment of
M.Sc. (PLO2,	tools necessary for molecular	3. discussion	assigned work
PLO3)	biology research		
Ph.D. (PLO1)	4. Show disciplines and	1. Assignment	1. assessment of
M.Sc. (PLO1,	responsibility for assigned works		assigned work
PLO4)			
Ph.D. (PLO1)	5. Use appropriate information	1. Assignment	1. assessment of
M.Sc. (PLO5)	technology to explore literatures		assigned work
	in Molecular Biology		

Alignment of teaching and assessment methods to course learning outcome:

Course description:

Overview of cell structure and function; structure of nucleic acids; genes and genome organization; DNA replication; transcription; translation; protein structure and function; lipids and carbohydrates; protein trafficking; isolation, purification and detection of nucleic acids; basic DNA cloning; polymerase chain reaction (PCR) and DNA sequencing; basic bioinformatics; basic protein analysis

Course schedule:

Date: Monday, Tuesday, Thursday Time: 09.30-11.30 and 13.30-15.30 Room C405

Date/Time	Topic/Details	Number of Hours	Class Activities/Teaching Media	Lecturers
Mon, Aug 7 09.00-09.30	Introduction to the course	30 min		Apinunt

Date/Time	Topic/Details	Number of Hours	Class Activities/Teaching Media	Lecturers
09.30-11.30	1 Overview of cell structure and function	2	Lecture, active learning, class discussion	Ittipat
13.30-15.30	2 Genes and genome organization	2	Lecture, active learning, class discussion	Poochit
Tue, Aug 8 09.30-11.30	3 Structure of nucleic acids	2	Lecture, active learning, class discussion	Poochit
13.30-15.30	4 DNA replication	2	Lecture, active learning, class discussion	Poochit
*Wed, Aug 9 09.30-11.30	5 Transcription	2	Lecture, active learning, class discussion	Poochit
13.30-15.30	6 Viral gene structure and regulation	2	Lecture, active learning, class discussion	Ittipat
Tue, Aug 15 09.30-11.30	7 Translation	2	Lecture, active learning, class discussion	Chanan
13.30-15.30	8 Protein structure and function	2	Lecture, active learning, class discussion	Ittipat
Thu, Aug 17 09.30-11.30	9 Lipids and carbohydrates	2	Lecture, active learning, class discussion	Chanan
13.30-15.30	10 Protein trafficking	2	Lecture, active learning, class discussion	Poochit
Mon, Aug 21 09.30-11.30	11 Isolation and purification of nucleic acids	2	Lecture, active learning, class discussion	Poochit
13.30-15.30	12 Basic principles of DNA cloning	2	Lecture, active learning, class discussion	Chalermporn
Tue, Aug 22 09.30-11.30	13 Detection of nucleic acids	2	Lecture, active learning, class discussion	Poochit
13.30-15.30	14 Basic Bioinformatics	2	Lecture, active learning, class discussion	Duangrudee
Thu, Aug 24 13.30-15.30	15 Basic principles of protein analysis	2	Lecture, active learning, class discussion	Panadda

* Lectures 5 and 6 will be on Wednesday

Assessment Criteria:

CLOs	Assessment criteria	Evaluated in	Evaluation
		week	ratio
CLO1, CLO2,	1. class participation	1-4	95%
CLO3	2. assessment of		
	assigned work		
CLO4, CLO5	1. assessment of	1-4	5%
	assigned work		

Student's achievement will be graded using symbols: A, B^+ , B, C^+ , C based on the distribution of students' scores from the whole course.

Date revised: 3 July 2023