Course Syllabus MBMG 515 Protein Technologies and Applications Academic Year 2023

Course ID and Title: MBMG 515 Protein Technologies and Applications

Course Coordinator: Asst. Prof. Chalongrat Noree, Ph.D.

Tel. 02-441-9003 to 7 Ext. 1274, Mobile: 062-454-1556

Email: chalongrat.nor@mahidol.ac.th,

chalongrat.nor@mahidol.edu, chalongrat.nor@gmail.com

Office and Lab: B205

Institute of Molecular Biosciences, Mahidol University

Instructors:

1. Assoc. Prof. Chartchai Krittanai, Ph.D.

Email: chartchai.kri@mahidol.ac.th

Website: https://mb.mahidol.ac.th/en/5-chartchai-krittanai/

2. Assoc. Prof. Surapon Piboonpocanun, Ph.D.

Email: surapon.pib@mahidol.ac.th

Website: https://mb.mahidol.ac.th/en/O-surapon-piboonpocanun/

3. Asst. Prof. Chalongrat Noree, Ph.D.

Email: chalongrat.nor@mahidol.ac.th

Website: https://mb.mahidol.ac.th/en/8-chalongrat-noree/

4. Asst. Prof. Duangrudee Tanramluk, Ph.D.

Email: duangrudee.tan@mahidol.ac.th

Website: https://mb.mahidol.ac.th/en/2-duangrudee-tanramluk/

5. Ittipat Meewan, Ph.D.

Email: Ittipat.mee@mahidol.ac.th

Website: https://mb.mahidol.ac.th/en/ittipat/

6. Chonticha Saisawang, Ph.D. (Researcher Level 3)

Email: chonticha.sai@mahidol.ac.th

Website: https://mb.mahidol.ac.th/en/4-chonticha-saisawang/

7. Asst. Prof. Lalintip Hocharoen, Ph.D. (Guest Faculty)

Bioprocess Research and Innovation Centre (BRIC)

King Mongkut's University of Technology Thonburi (KMUTT)

Email: lalintip.hoc@gmail.com

Support Staff:

1. Naraporn Sirinonthanawech

Email: naraporn.sir@mahidol.ac.th

2. Nuanwan Pongtanom

Email: <u>nuanwan.pon@mahidol.ac.th</u>

Credits: 2(1-2-3)

Curriculum: Master of Science Program in Molecular Genetics and Genetic

Engineering (Required course)

Doctor of Philosophy Program in Molecular Genetics and Genetic

Engineering (Required course for students from B.Sc.)

Semester: 2nd Semester

Pre-Requisites:

None.

Course Learning Outcomes (CLOs):

By the end of the course, student should be able to:

- 1. Describe protein-based technologies that can be used for protein/proteomic research and/or innovation development.
- 2. Apply the knowledge of protein-based technologies to offer a promising solution for any biological problem.
- 3. Deliver creative/innovative idea of the use of protein-based technologies and applications with appropriate ICT skills.
- 4. Demonstrate scientific integrity, responsibility, and safety practices.
- 5. Demonstrate professional and interpersonal skills.

Alignment of Teaching and Assessment Methods to Course Learning Outcomes:

	Course Learning Outcomes	Teaching Meth	od	Assessment Method
1.	Describe protein-	Lecture	1.	Q&A during lecture
	based technologies	Discussion	2.	Discussion
	that can be used for			performance
	research study and/or		3.	Quiz / short exercise
	innovation		4.	Assignment
	development.			
2.	Apply the knowledge of	Discussion	1.	Discussion
	protein-based	Hands-on lab prac	tice	performance
	technologies to offer a		2.	Lab performance

Course Learning Outcomes	Teaching Method	Assessment Method
promising solution for any biological problem.	3. Problem-based project (final presentation)	3. Problem-based project presentation performance (scientific content and innovative idea)
3. Deliver the idea of the use of protein-based technologies and applications with appropriate ICT skills.	 Discussion Writing lab report Individual or group assignment/presentation (lecture and lab session) Problem-based project (final presentation) 	 Discussion performance Lab report writing performance Presentation performance (lecture and lab session) Problem-based project presentation performance (appropriate use of ICT?)
4. Demonstrate scientific integrity, responsibility, and safety practice.	 Discussion (about scientific integrity, responsibility, and safety practice) Assignment Writing lab report Hands-on lab safety practice 	 Attendance (presence, absence, on-time?) Task submission (on-time?) Lab report writing (plagiarism?) Lab performance (follow safety practice?)
5. Demonstrate professional and interpersonal skills.	 Discussion Writing lab report Individual or group assignment/presentation Problem-based project (final presentation) 	 Discussion performance (active participation?) Lab report writing performance Performance in the team (teamwork or leadership skills) Problem-based project presentation

Course Learning Outcomes	Teaching Method	Assessment Method
		performance
		(teamwork)

Course Description:

Proteomics; Expression Profiling by 2D Electrophoresis; Mass Spectrometry; Bioinformatics Tools for Proteomic Analysis; Phage Display; Protein Database and Protein Visualization; Drug Design; Fluorescent Protein Technology

Course Schedule: (Classroom C405 and Lab Classroom C410-C411)

				Instructors
	Activities	Description	Time	and
				Assistants
	Hands-on La	b Practice: Fluorescent Protein T	echnology	
		Monday, November 27, 2023		
1	Lecture: Overview	To go over the concept of	9:00 —	
'	Leoture. Overview	fluorescent protein technology.	10:00 AM	
2	Lab: PCR	To prepare the DNA cassette	10:00 —	
_	Lub: POR	"ASN1::GFP::NLS; kanR"	10:30 AM	
3	Lab: Preparing	To be used for checking PCR	10:30 —	CN, IM,
3	Agarose Gel	product (DNA cassette).	11:30 AM	(assistants:
4	Lab: Agarose gel	To abook the DCD and dust		NS, NP)
4	electrophoresis	To check the PCR product.	40.00	
5	Lab: PCR purification	To purify the DNA cassette.	12:30 — 4:00 PM	
6	Lab: Preparing Yeast	To prepare a starter culture for		
6	O/N Culture	making competent yeast cells.		
	Hands-on La	b Practice: Fluorescent Protein T	echnology	
		Tuesday, November 28, 2023		
1	Lab: Preparing Yeast	To prepare log-phase yeast cells	9:00 —	
'	Log-Phase Culture	for transformation.	9:30 AM	
		To discuss about yeast genome		CN, IM
	Lecture/Discussion	engineering technique for		(assistants:
2	and Computer Lab:	tagging protein of interest	9:30 —	NS, NP)
_	Plasmid Construction	with fluorescent protein.	11:30 AM	100, 107)
	and Primer Design	To retrieve nucleotide		
		sequence of "ASN1" from yeast		

				Instructors	
	Activities	Description	Time	and	
		,		Assistants	
		genome database, construct			
		the recombinant plasmid (in			
		silico), and design primers			
		using "ApE" (A plasmid Editor			
		software).			
		To locate primers on the			
		plasmid template in order to			
		find out the expected length			
		of PCR product (DNA			
		cassette).			
	Lab: Preparing	To make competent yeast cells			
3	Competent Yeast Cells	(TUB1::mCherry)	12:30 —		
	Lab: Yeast	To transform DNA cassette into	3:30 PM		
4	Transformation	yeast competent cells.			
		To discuss about experimental			
_	Dia	designs and applications of	3:30 —		
5	Discussion	fluorescently-tagged proteins	3:30 — 4:00 PM		
		for in vivo studies.			
	Hands-on La	b Practice: Fluorescent Protein T	echnology		
		Wednesday, November 29, 2023			
		To transfer yeast transformants	9:00 —		
1	Lab: Replica Plating	from non-selective to selective	9:30 AM		
		agar plates.	0.00 /111		
	Lab: Analyzing	To microscopically visualize	9:30 AM	CN, IM	
2	Transformants with	yeast expressing Asn1p-EGFP-	- 12:00	(assistants:	
-	Fluorescence	NLS and Tub1p-mCherry, and	PM	NS, NP)	
	Microscopy	inspect if they colocalize.			
		To recap the techniques and	1:00 —		
3	Recap	applications of fluorescent	4:00 PM		
		proteins.			
	Proteomics and Mass Spectrometry				
		Thursday, November 30, 2023			
	Lecture/Discussion:	To introduce the principle of	9:00 —		
1	Proteomics and Mass	proteomic research and	11:30 AM	CK	
	Spectrometry	applications			

	Activities	Description	Time	Instructors and Assistants
2	MU-FRF Visit	To introduce the facility and scientific equipment available at the Mahidol University – Frontier Research Facility.	1:00 — 3:00 PM	CK, CN, NS
	Prote	in Visualization and Protein Datab	ase	
		Monday, December 4, 2023		
1	Lecture/Discussion and Computer Lab: Protein Visualization and Protein Database	To apply molecular visualization techniques for communicating protein science information	9:00 — 11:30 AM	DT
2	Practice: Problem- Based Project	To design and create innovative ideas/products. Note: Students will be divided into groups to work on a problem-based project about using protein-based techniques to create a novel product / innovation.	1:00 — 4:00 PM	CS, SP
		Drug Design Wednesday, December 6, 2023		
1	Lecture/Discussion and Computer Lab: Drug Design	To create protein-ligand illustration for understanding drug design	9:00 — 11:30 AM	DT
2	Practice: Problem- Based Project (Continued)	To design and create innovative ideas/products.	1:00 — 4:00 PM	СK
		Bioprocess		
		Thursday, December 7, 2023		
1	Lecture/Discussion: Bioprocess	To introduce the production of a value-added material/product from living source cells.	9:00 — 11:30 AM	LH
2	Practice: Problem- Based Project (Continued)	To design and create innovative ideas/products.	1:00 — 4:00 PM	IM
		Phage Display		

	Activities	Description	Time	Instructors and Assistants	
		Tuesday, December 12, 2023			
1	Lecture: Phage Display	To introduce the concept of phage display and its application	9:00 — 11:30 AM	SP	
2	Practice: Problem- Based Project (Continued)	To design and create innovative ideas/products.	1:00 — 4:00 PM	DT	
	Preparation for Problem-Based Protein Presentation Wednesday, December 13, 2023				
1	Practice: Preparing Problem-Based Project Presentation/Pitching	To prepare the group presentation/pitching for the assigned problem-based project.	9:00 AM — 12:00 PM	SP, CS	
	Pr	oblem-Based Project Presentation			
		Thursday, December 14, 2023			
1	Group Presentation/Pitching	To present students' innovative ideas/products.	9:00 AM — 12:00 PM	All Teaching Staff	
2	After Action Review (AAR)	To collect feedback, comments, suggestions from students for further improvements.	1:00 — 3:00 PM	CN	

Notes: CK Chartchai Krittanai

CN Chalongrat Noree

CS Chonticha Saisawang

DT Duangrudee Tanramluk

IM Ittipat Meewan

LH Lalintip Hocharoen

SP Surapon Piboonponcanun

NS Naraporn Sirinonthanawech

NP Nuanwan Pongtanom

Assessment Criteria:

	Assessment Criteria	Description	Scoring Rubric
	Assessment Oriteria	(in Details)	Gooring Rubric
1	Class Attendance (5%)	Showing up in the class (5%)	• Full attendance (4)
			• ~ 80% attendance (3)
			• ~ 60% attendance (2)

	Assessment Cuitonia	Description	0
	Assessment Criteria	(in Details)	Scoring Rubric
			• < 50% attendance (1)
2	Lab Report (10%)	The presence of intro, methods,	Complete (4)
		results, discussion, and conclusion	• ~ 80% complete (3)
		with no plagiarism (2%)	• ~ 60% complete (2)
			• < 50% complete (1)
		Data presentation (2%)	Complete (4)
			• ~ 80% complete (3)
			• ~ 60% complete (2)
			• < 50% complete (1)
		Data analysis and interpretation	Complete (4)
		(2%)	• ~ 80% complete (3)
			• ~ 60% complete (2)
			• < 50% complete (1)
		English and writing skills (2%)	Complete (4)
			• ~ 80% complete (3)
			• ~ 60% complete (2)
			• < 50% complete (1)
		Report format and typing errors	Complete (4)
		(1%)	• ~ 80% complete (3)
			• ~ 60% complete (2)
			• < 50% complete (1)
		On-time submission (1%)	• On-time (4)
			• Late (1-3)
3	Quiz / Exercise (15%)	Depending on the correctness and	Raw scores will be
		completion (15%)	adjusted to be in a
			range of 0-15%
4	Discussion Performance /	Participation and performance	• Active (4)
	Individual or Group	(5%)	• Fairly active (2-3)
	Assignment (Presentation)		• Inactive (1)
	(20%)	Professional and interpersonal	• Active (4)
		skills (responsibility, teamwork,	• Fairly active (2-3)
		and leadership) (5%)	• Inactive (1)
		Creative and high-order thinking	Highly expressed (4)
		skills (10%)	• Fairly expressed (2-3)
			• Not shown (1)
5	Problem-Based Project	Scientific background (4%)	Excellent and complete
	Presentation (20%)		(4)
			• Good (3)
			• Fair (2)
			• Not solid (1)

Assessment Criteria	Description (in Details)	Scoring Rubric
	Innovative and creative thinking	Highly expressed (4)
	skills (4%)	• Fairly expressed (2-3)
		• Not shown (1)
	Presentation skills (4%)	• Excellent (4)
		• Good (3)
		• Fair (2)
		• Not solid (1)
	Debate and argument skills (4%)	• Excellent (4)
		• Good (3)
		• Fair (2)
		• Not solid (1)
	Professional and interpersonal	• Active (4)
	skills (responsibility, teamwork,	• Fairly active (2-3)
	and leadership) (4%)	• Inactive (1)
6 Lab Performance (30%)	Safety practice (5%)	• Excellent (4)
		• Good (3)
		• Fair (2)
		• Not solid (1)
	Responsibility (5%)	Highly expressed (4)
		• Fairly expressed (2-3)
		• Not shown (1)
	Lab skills (10%)	• Excellent (4)
		• Good (3)
		• Fair (2)
		• Not solid (1)
	Decision making and trouble-	• Excellent (4)
	shooting skills (10%)	• Good (3)
		• Fair (2)
		• Not solid (1)

Student's achievement will be graded using symbols: A, B+, B, C+, C, D+, D and F, based on the criteria as follows:

Percentage	Grade	Description
80-100	А	Excellent
75-79	B+	Very Good
70-74	В	Good
65-69	C+	Fairly Good

Percentage	Grade	Description
60-64	С	Fair
55-59	D+	Poor
50-54	D	Very Poor
0-49	F	Fail

Date of Revision: July 2023