Course Syllabus MBMB 645 Prime Editing Technique Academic year 2025 Course ID and Title MBMB 645 Prime Editing Technique ชมชม ๖๔๕ เทคนิคไพรม์อีดิติง **Course coordinator** Asst. Prof.Natee Jearawiriyapaisarn, Ph.D. Institute of Molecular Biosciences, Mahidol University Tel: 0-2441-9003 to 7 Ext. 1312, 1357 Email: natee.jea@mahidol.edu **Instructors:** Asst. Prof.Natee Jearawiriyapaisarn, Ph.D. Support Staff: Miss Pirut Thongngam Credits: 1 (0-2-1) **Curriculum:** Master of Science Program in Molecular and Integrative Biosciences (elective course) Doctor of Philosophy Program in Molecular and Integrative Biosciences (elective course) Semester offering: First semester **Pre-requisites:** None ### Course learning outcomes (CLOs) and their alignment with PLOs: | CLOs | PLO1 | PLO2 | PLO3 | PLO4 | |--|------|--------------|------|------| | By the end of the course, student should be able to: | | | | | | 1. Apply knowledge of prime editing to achieve precise genome modifications in research (Knowledge). | ✓ | | | | | 2. Design and conduct experiments utilizing prime editing | | | | | | technology, analyze data, and interpret findings to | | \checkmark | | | | advance genome engineering research (Skills). | | | | | | 3. Adhere to scientific integrity, implement safety | | | | | | practices, and demonstrate responsibility in experimental | | | ✓ | | | work and assignments (Ethics). | | | | | | 4. Demonstrate leadership, teamwork, effective research | | | | | | communication, and strong interpersonal skills in | | | | ✓ | | collaborative scientific environments (Characters). | | | | | #### Alignment of Teaching and Assessment Methods to Course Learning Outcomes: | Course Learning Outcomes | Teaching Method | Assessment Method | |------------------------------------|---------------------------|------------------------------------| | 1. Apply knowledge of prime | 1. Problem-based project | 1. Laboratory performance | | editing to achieve precise | 2. Discussion | 2. Discussion performance | | genome modifications in | 3. Assignment | 3. Assignment | | research. | | | | 2. Design and conduct | 1. Hands-on lab practice | 1. Laboratory performance | | experiments utilizing prime | | 2. Lab report | | editing technology, analyze data, | | | | and interpret findings to advance | | | | genome engineering research. | | | | 3. Adhere to scientific integrity, | 1. Lab safety orientation | 1. Laboratory performance | | implement safety practices, and | 2. Discussion | 2. Discussion performance | | demonstrate responsibility in | 3. Lab report | 3. Report and assignment | | experimental work and | 4. Assignment | submission | | assignments. | | 4. Assignment | | | | 5. Plagiarism detection | | 4. Demonstrate leadership, | 1. Problem-based project | 1. Laboratory performance | | teamwork, effective research | 2. Discussion | 2. Discussion performance | | communication, and strong | 3. Group activities | 3. Performance in group activities | | interpersonal skills in | 4. Presentation | 4. Presentation performance | | collaborative scientific | | | | environments. | | | #### Course description: Prime editing technology; design of prime editing components; plasmid construction for expressing prime editing components; basic cell culture techniques and DNA transfection; genome editing analysis by PCR; next-generation sequencing and web-based programs เทคโนโลยีไพรม์อีดิติง การออกแบบส่วนประกอบของไพรม์อีดิติง การสร้างพลาสมิดสำหรับการแสดงออกของส่วนประกอบของ ไพรม์อีดิติง เทคนิคการเลี้ยงเซลล์ขั้นพื้นฐานและการนำส่งดีเอ็นเอเข้าสู่เซลล์ การตรวจสอบการแก้ไขจีโนมด้วยเทคนิคพีซีอาร์ เทคนิคการวิเคราะห์หาลำดับนิวคลีโอไทด์ยุคใหม่และโปรแกรมบนเว็บ # Course Schedule (Tentative): (Classroom C405 and Laboratory room D408, Institute of Molecular Biosciences, Mahidol University) | | Activities | Description | Time | Instructors
and
Assistants | |-------|---|---|---------------|----------------------------------| | Day 1 | : November 24, 2025 | | | | | 1 | Lecture/Discussion: Prime editing mechanism and workflow (1) Lab: Design of epegRNAs and nicking sgRNAs | To introduce/review the concept and workflow of prime editing. - Lab safety orientation - To design epegRNAs and nicking sgRNAs for precise genome editing. | 9.00 – 12.00 | NJ | | 2 | Lab: Preparation of epegRNA and nicking sgRNA constructs (1) | To generate oligo duplexes of epegRNA and nicking sgRNA. To perform digestion-ligation reactions. To transform plasmid DNA into E. Coli. | 13.00 - 17.00 | NJ | | Day 2 | 2: November 25, 2025 | | | , | | 1 | Lab: Genome correction by prime editing in HEK293T cells (1) | - To seed cells into a culture plate. | 9.00 – 12.00 | NJ | | 2 | Lecture/Discussion: Prime editing mechanism and workflow (2) | To discuss the concept and workflow of prime editing. | 13.00 - 16.00 | NJ | | 3 | Lab: Preparation of epegRNA and nicking sgRNA constructs (2) | - To pick up bacterial colonies and culture in a liquid medium. | 16.00 - 17.00 | NJ | | Day 3 | 3: November 26, 2025 | | | | | 1 | Lab: Preparation of epegRNA and nicking sgRNA constructs (3) | To isolate plasmid DNA. To measure plasmid DNA concentration and purity. To demonstrate and discuss how to screen positive clones by colony PCR. To demonstrate and discuss how to confirm correct clones by DNA sequencing. | 9.00 – 12.00 | NJ | | | Activities | Description | Time | Instructors
and
Assistants | |-------|---|---|---------------|----------------------------------| | 2 | Lab: Genome correction by prime editing in HEK293T cells (2) | - To transfect the plasmid into
HEK293T cells. | 13.00 - 17.00 | NJ | | Day 4 | : November 27, 2025 | | | | | 1 | Lab: Analysis of genome correction (1) | - To collect cells for flow cytometry analysis to assess transfection efficiency. | 13.00 - 17.00 | NJ | | Day 5 | 5: November 28, 2025 | | | | | 1 | Lab: Analysis of genome correction (2) | - To collect cells, extract DNA, and perform allele-specific PCR for analysis of genome correction. | 9.00 – 12.00 | NJ | | 2 | Lab: Analysis of genome correction (3) | To perform agarose gel electrophoresis. To demonstrate and discuss how to analyze and quantify genome editing efficiency by Sanger DNA sequencing and web-based tools (TIDER and ICE analysis). | 13.00 - 15.00 | NJ | | 3 | Presentation, discussion, reflection, and after-action review | To present the results achieved in the class. To discuss the techniques and applications of prime editing. To provide students opportunities to describe their learning experiences received from this course and how they can be applied to their future learning. To collect comments, and suggestions from students for further improvements of the course. | 15.00 - 17.00 | NJ | ## Assessment Criteria: | Ass | essment method | Performance criteria | Scoring rubric | |-----|----------------------------------|----------------------|---------------------| | 1 | Class attendance & participation | Attendance and | Punctually (4) | | | (10%) | punctuality (5%) | 5 minutes late (3) | | | | | 10 minutes late (2) | | | | | 15 minutes late (1) | |---|-------------------------------|----------------------------|---------------------------------| | | | | > 20 minutes late or absent (0) | | | | Participation (5%) | Frequently participates (4) | | | | Tarticipation (970) | Moderately participates (2-3) | | | | | Seldom participates (1) | | | | | Never participates (0) | | 2 | Assignment (15%) | Punctual assignment | On-time (4) | | | Assignment (1970) | submission (1%) | 1 day late (3) | | | | 3UDITII33IOTT (170) | 2 days late (2) | | | | | 3 days late (1) | | | | | · · | | | | C 1: :1 (20() | 4 days late or later (0) | | | | Creativity (3%) | Excellent (4) | | | | | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Organization (2%) | Excellent (4) | | | | | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Content accuracy (5%) | Excellent (4) | | | | | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Supporting evidence (2%) | Excellent (4) | | | | | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Grammar and originality | Excellent (4) | | | | (2%) | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | 3 | Presentation/Discussion (15%) | Participation and | Active (4) | | | | performance (2%) | Fairly active (2-3) | | | | | Inactive (1) | | | | Professional and | Excellent (4) | | | | interpersonal skills | Above average (3) | | | | (responsibility, teamwork, | Average (2) | | L | | and leadership) (5%) | Needs improvement (1) | | | | Creative and high-order | Excellent (4) | |---|-----------------------|------------------------------|--------------------------| | | | thinking skills (8%) | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | 4 | Lab performance (30%) | Safety practice (5%) | Excellent (4) | | | | · | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Lab skills (10%) | Excellent (4) | | | | | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Time management (5%) | Excellent (4) | | | | | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | | | Troubleshooting skills | Excellent (4) | | | | (10%) | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | | 5 | Lab report (30%) | Punctual submission (2%) | On-time (4) | | | | | 1 day late (3) | | | | | 2 days late (2) | | | | | 3 days late (1) | | | | | 4 days late or later (0) | | | | Report organization: intro, | Excellent (4) | | | | methods, results, | Above average (3) | | | | discussion, and conclusion | Average (2) | | | | (10%) | Needs improvement (1) | | | | Data presentation, | Excellent (4) | | | | analysis, and interpretation | Above average (3) | | | | (15%) | Average (2) | | | | | Needs improvement (1) | | | | Grammar and originality | Excellent (4) | | | | (3%) | Above average (3) | | | | | Average (2) | | | | | Needs improvement (1) | Student's achievement will be graded using symbols: A, B+, B, C+, C, D+, D, and F, based on the criteria as follows: | Percentage range | Grade | Description | |------------------|-------|-------------| | 80-100 | А | Excellent | | 75-79 | B+ | Very Good | | 70-74 | В | Good | | 65-69 | C+ | Fairly Good | | 60-64 | С | Fair | | 55-59 | D+ | Poor | | 50-54 | D | Very Poor | | 0-49 | F | Fail | Date of Revision: July 31, 2025