Course Syllabus

MBMG 500 Essentials in Molecular Biology Academic year 2021

Course ID and Name: MBMG 500 Essentials in Molecular Biology

Course coordinator: Assoc.Prof. Apinunt Udomkit

Tel: 02-441-9003-7 ext. 1236

E-mail: apinunt.udo@mahidol.ac.th

Instructors:

- 1. Prof. Chanan Angsuthanasombat
- 2. Prof. Duncan R. Smith
- 3. Assoc. Prof. Albert Ketterman
- 4. Assoc. Prof. Apinunt Udomkit
- 5. Assoc. Prof. Chalermporn Ongvarrasopone
- 6. Assoc. Prof. Panadda Boonserm
- 7. Asst. Prof. Kusol Pootanakit
- 8. Asst. Prof. Sarin Chimnaronk
- 9. Asst. Prof. Duangrudee Tanramluk
- 10. Lect. Poochit Nonejuie

Credits: 2 (2-0-4)

Curriculum: Master of Science Program in Molecular Genetics and Genetic Engineering (required course)

Doctor of Philosophy Program in Molecular Genetics and Genetic

Engineering (required course for students from B.Sc.)

Semester offering: First semester

Pre-requisites: None

Expected learning outcomes:

1. Explain the fundamental structure, properties and functions of cells and biomolecules

2. Compare and analyze molecular processes and mechanisms of regulation in prokaryotes and eukaryotes

3. Describe principles of basic techniques and bioinformatics tools necessary for molecular biology research

Alignment of teaching and assessment methods to course learning outcome:

Course learning outcome	Teaching method	Assessment methods	
1. Explain the fundamental	Online lecture, active	Written examination,	
structure, properties and	learning, discussion	class participation,	
functions of cells and		assessment of assigned	
biomolecules		work	
2. Compare an analyze molecular	Online lecture, active	Written examination,	
processes and mechanisms of	learning, discussion	class participation,	
regulation in prokaryotes and		assessment of assigned	
eukaryotes		work	
3. Describe principles of basic	Online lecture, active	Written examination,	
techniques and bioinformatics	learning, discussion	class participation,	
tools necessary for molecular		assessment of assigned	
biology research		work	

Course description:

Overview of cell structure and function; structure of nucleic acids; genes and genome organization; DNA replication; transcription; translation; protein structure and function; Lipids and carbohydrates; protein trafficking; isolation, purification and detection of nucleic acids; basic DNA cloning; polymerase chain reaction (PCR) and DNA sequencing; Basic Bioinformatics; basic protein analysis

Course schedule:

Date: Monday, Tuesday, Thursday Time: 09.30-11.30 and 13.30-15.30 Online Teaching (Zoom)

Date/Time	Topic/Details	Number of Hours	Class Activity/Teaching Media	Lecturer
Tue, Aug 3 09.00-09.30	Introduction to the course	30 min	Zoom	Apinunt

Date/Time	Topic/Details	Number of	Class Activity/Teaching Media	Lecturer	
00 20 11 20		Hours		Durana	
09.30-11.30	1 Overview of cell structure and	2	Online lecture, active learning,	Duncan	
12 20 15 20	2 Cones and geneme organization	2		Deachit	
15.50-15.50	z Genes and genome organization	Ζ	class discussion	POOCHIL	
	3 Structure of puckaic acids	2	Online locture, active learning	Sarin	
09 30-11 30	5 Structure of Huctere acids	2	class discussion	Jann	
*13.00-15.00	4 DNA replication	2	Online lecture, active learning	Poochit	
15.00-15.00		2	class discussion	FOOCHIC	
*Fri Aug 6	5 Transcription	2	Online lecture active learning	Aninunt	
09 30-11 30	5 Hanschption	2	class discussion	, pindine	
13.30-15.30	6 Translation	2	Online lecture, active learning	Chanan	
10.00 10.00		_	class discussion		
Mon, Aug 9	Examination I (09.00-12.00)				
Tue, Aug 10	7 Protein structure and function	2	Online lecture, active learning,	Chanan	
09.30-11.30			class discussion		
13.30-15.30	8 Lipids and carbohydrates	2	Online lecture, active learning,	Chanan	
			class discussion		
Mon, Aug 16	9 Protein trafficking	2	Online lecture, active learning,	Albert	
09.30-11.30			class discussion		
13.30-15.30	10 Isolation and purification of	2	Online lecture, active learning,	Poochit	
	nucleic acids		class discussion		
Thu, Aug 19	Examination II (09.00-12.00)				
Mon, Aug 23	11 Basic principles of DNA cloning	2	Online lecture, active learning,	Chalermporn	
09.30-11.30			class discussion		
13.30-15.30	12 Detection of nucleic acids	2	Online lecture, active learning,	Apinunt	
			class discussion		
Tue, Aug 24	13 Polymerase chain reaction	2	Online lecture, active learning,	Kusol	
09.30-11.30	(PCR) and DNA sequencing		class discussion		
13.30-15.30	14 Basic Bioinformatics	2	Online lecture, active learning,	Duangrudee	
			class discussion		
Thu, Aug 26	15 Basic principles of protein	2	Online lecture, active learning,	Panadda	
09.30-11.30			class discussion	L	
Mon, Aug 30	Final Examination (09.00-12.00)				

* Lecture 4 will start at 13.00

Lectures 5 and 6 will be conducted on Friday

Assessment Criteria:

Written examination/Assignment 95 %

Class Attendance 5 %

Student's achievement will be graded using symbols: A, B+, B, C+, C based on the distribution of students' scores from the whole course.

Date revised: 1 June 2021