Course Syllabus MBNS 605 Neurochemistry Academic Year 2021

Course ID and Name: MBNS 605 Neurochemistry Course coordinator: Prof. Banthit Chetsawang, Ph.D. Tel: 02-441-9003-7 ext. 1206 Email: <u>banthit.che@mahidol.ac.th</u>

Instructors:

- 1. Prof. Piyarat Govitrapong, Ph.D. (piyarat.gov@mahidol.ac.th)
- 2. Prof. Banthit Chetsawang, Ph.D. (banthit.che@mahidol.ac.th)
- 3. Assoc. Prof. Wipawan Thangnipon, Ph.D. (wipawan.tha@mahidol.ac.th)
- 4. Assoc. Prof. Nuanchan Chutabhakdikul, Ph.D (nuanchan.chu@mahidol.ac.th)
- 5. Assoc. Prof. M.L. Saovaros Svasti, Ph.D. (saovaros.sva@mahidol.ac.th)
- 6. Assist. Prof. Sujira Mukda, Ph.D. (sujira.muk@mahidol.ac.th)
- 7. Assist. Prof. Narisorn Kitiyanant, Ph.D. (narisorn.kit@mahidol.ac.th)
- 8. Lect. Jiraporn Panmanee, Ph.D. (jiraporn.pam@mahidol.ac.th)

Supporting Staff:

1. Somsong Phengsukdaeng (somsong.phe@mahidol.edu)

Credits: 2 (2-0-4)
Curriculum: Master of Science Program in Neuroscience (core course)
Doctor of Philosophy Program in Neuroscience (core course for B.Sc. Graduates and
M.Sc. Graduates in other fields)
Semester offering: First semester

Pre-requisites:

Course learning outcomes (CLOs)

Upon completion of this course, students should be able to:

- Understand chemical neurotransmitters, presynaptic proteins and cell adhesion molecules, chemically mediated synaptic transmission, neurotransmitter receptors, receptor-activated phosphoinositide turnover, G-proteins, cyclic nucleotides, and phosphorylation in regulation of neuronal signaling functions. (PLO2) I
- 2. Explain the principles and concepts of the chemical and functional organization of the nervous system at the cellular and molecular levels. (PLO2) I
- 3. Demonstrate an understanding of essential knowledge acquired for further approaches relevant to neurochemical research. (PLO3) R

Course learning outcome		Teaching method	Assessment method
1.	Understand chemical	(1) Lecture	(1) Quiz
	neurotransmitters, presynaptic proteins		(2) Written examination
	and cell adhesion molecules,		
	chemically mediated synaptic		
	transmission, neurotransmitter		
	receptors, receptor-activated		
	phosphoinositide turnover, G-proteins,		
	cyclic nucleotides, and		
	phosphorylation in regulation of		
	neuronal signaling functions.		
2.	Explain the principles and concepts of	(1) Lecture	(1) Quiz
	the chemical and functional		(2) Written examination
	organization of the nervous system at		
	the cellular and molecular levels.		
3.	Demonstrate an understanding of	(1) Group discussion	(1) Participation
	essential knowledge acquired for		
	further approaches relevant to		
	neurochemical research		

Alignment of teaching and assessment methods to course learning outcome:

Course description:

The course emphasizes on principles of chemical transmission; second messenger; signaling transduction; neurotransmitters; neurotransmitter receptors; nuclear hormone receptor signaling; advances in neuronal stem cell research and molecular biology.

Course schedule:

Date: Monday, Wednesday and Friday

Time: 09.00 - 11.00 and 13.00 - 15.00

Rooms: Class activity will be held by an onsite at MB Building or online platform through videoconferencing application, either through WebEx or Zoom depending on the situation of the COVID-19 pandemic in Thailand.

Topics	Date	Time	Topics	Instructors
1.	13 Sep 2021	09.00-11.00	Chemical neurotransmission and signal transduction	Wipawan
2.		13.00-15.00	Synaptic, presynaptic proteins and cell adhesion	Nuanchan
			molecule	
3.	15 Sep 2021	09.00-11.00	Acetylcholine	Nuanchan
4.		13.00-15.00	Catecholamine	Piyarat
5.	17 Sep 2021	09.00-11.00	Serotonin, histamine and melatonin	Banthit
6.		13.00-15.00	Amino acid neurotransmitters	Banthit
7.	20 Sep 2021	09.00-11.00	Neuropeptide	Piyarat
8		13.00-15.00	Atypical neurotransmitters	Sujira
Exam I	27 Sep 2021	09.00-16.00	Exam 1 (Topics 1-8)	Somsong
9.	29 Sep 2021	09.00-11.00	Neurochemistry of learning and memory	Wipawan
10.		13.00-15.00	Nuclear hormone receptor signaling	Nuanchan
11.	1 Oct 2021	09.00-11.00	Neural stem cells	Wipawan
12.		13.00-15.00	Recombinant DNA and protein technology	Jiraporn
13.	4 Oct 2021	09.00-11.00	Up-and down-regulation of gene expression	Saovaros
14.		13.00-15.00	Transgenic animal	Narisorn
15.	6 Oct 2021	09.00-11.00	Group discussion on integrated neurochemistry	Banthit
			research topics	
Exam II	15 Oct 2021	09.00-16.00	Examination II (Topics 8-14)	Somsong

Assessment criteria:

Assessment criteria	Assessment method	Scoring rubrics
Quiz, Written and oral	Short essay questions (In case	Scoring directly from correct
examination (80%)	of COVID-19 situation, Open	answers and keywords.
	book examination, and Oral	
	examination)	
Group discussion on assigned	Direct observation	observation of class
topic (5%)		participation (e.g., discussion,
		asking the question)
Participation in in-class	Direct observation	observation of class
discussion (5%)		participation (e.g., discussion,
		asking the question)
Class attendance (10%)	Numbers of classes signed in	Scoring directly from signing
		in each class

Student's achievement will be graded using symbols: A, B+, B, C+, C, D+, D, and F based on the criteria as follows:

Percentage	Grade
85 -100	А
80 - 84	В+
70 - 79	В
60 - 69	C+
50 - 59	С
45 - 49	D+
40 - 44	D
< 40	F

Notice: Since this course is a core requirement course, if students receive a final grade below "B", they will need to re-enroll this course in the next academic year.

Date revised: June 9, 2021